3.1.69 \(\int \frac {(a+b x)^2 \arctan (a+b x)}{\sqrt [3]{1+a^2+2 a b x+b^2 x^2}} \, dx\) [69]

3.1.69.1 Optimal result
3.1.69.2 Mathematica [B] (verified)
3.1.69.3 Rubi [N/A]
3.1.69.4 Maple [N/A] (verified)
3.1.69.5 Fricas [N/A]
3.1.69.6 Sympy [N/A]
3.1.69.7 Maxima [N/A]
3.1.69.8 Giac [N/A]
3.1.69.9 Mupad [N/A]

3.1.69.1 Optimal result

Integrand size = 35, antiderivative size = 35 \[ \int \frac {(a+b x)^2 \arctan (a+b x)}{\sqrt [3]{1+a^2+2 a b x+b^2 x^2}} \, dx=\text {Int}\left (\frac {(a+b x)^2 \arctan (a+b x)}{\sqrt [3]{1+(a+b x)^2}},x\right ) \]

output
Unintegrable((b*x+a)^2*arctan(b*x+a)/(1+(b*x+a)^2)^(1/3),x)
 
3.1.69.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(181\) vs. \(2(30)=60\).

Time = 4.75 (sec) , antiderivative size = 181, normalized size of antiderivative = 5.17 \[ \int \frac {(a+b x)^2 \arctan (a+b x)}{\sqrt [3]{1+a^2+2 a b x+b^2 x^2}} \, dx=-\frac {3 \left (1+(a+b x)^2\right )^{2/3} \left (\frac {5 \sqrt [3]{2} \sqrt {\pi } \operatorname {Gamma}\left (\frac {5}{3}\right ) \, _3F_2\left (1,\frac {4}{3},\frac {4}{3};\frac {11}{6},\frac {7}{3};\frac {1}{1+(a+b x)^2}\right )}{\left (1+(a+b x)^2\right )^2}+\operatorname {Gamma}\left (\frac {11}{6}\right ) \operatorname {Gamma}\left (\frac {7}{3}\right ) \left (15+\frac {90}{1+(a+b x)^2}+\frac {24 (a+b x) \arctan (a+b x) \operatorname {Hypergeometric2F1}\left (1,\frac {4}{3},\frac {11}{6},\frac {1}{1+(a+b x)^2}\right )}{\left (1+(a+b x)^2\right )^2}+5 \arctan (a+b x) (-4 (a+b x)+6 \sin (2 \arctan (a+b x)))\right )\right )}{140 b \operatorname {Gamma}\left (\frac {11}{6}\right ) \operatorname {Gamma}\left (\frac {7}{3}\right )} \]

input
Integrate[((a + b*x)^2*ArcTan[a + b*x])/(1 + a^2 + 2*a*b*x + b^2*x^2)^(1/3 
),x]
 
output
(-3*(1 + (a + b*x)^2)^(2/3)*((5*2^(1/3)*Sqrt[Pi]*Gamma[5/3]*Hypergeometric 
PFQ[{1, 4/3, 4/3}, {11/6, 7/3}, (1 + (a + b*x)^2)^(-1)])/(1 + (a + b*x)^2) 
^2 + Gamma[11/6]*Gamma[7/3]*(15 + 90/(1 + (a + b*x)^2) + (24*(a + b*x)*Arc 
Tan[a + b*x]*Hypergeometric2F1[1, 4/3, 11/6, (1 + (a + b*x)^2)^(-1)])/(1 + 
 (a + b*x)^2)^2 + 5*ArcTan[a + b*x]*(-4*(a + b*x) + 6*Sin[2*ArcTan[a + b*x 
]]))))/(140*b*Gamma[11/6]*Gamma[7/3])
 
3.1.69.3 Rubi [N/A]

Not integrable

Time = 0.31 (sec) , antiderivative size = 35, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {5580, 5560}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b x)^2 \arctan (a+b x)}{\sqrt [3]{a^2+2 a b x+b^2 x^2+1}} \, dx\)

\(\Big \downarrow \) 5580

\(\displaystyle \frac {\int \frac {(a+b x)^2 \arctan (a+b x)}{\sqrt [3]{(a+b x)^2+1}}d(a+b x)}{b}\)

\(\Big \downarrow \) 5560

\(\displaystyle \frac {\int \frac {(a+b x)^2 \arctan (a+b x)}{\sqrt [3]{(a+b x)^2+1}}d(a+b x)}{b}\)

input
Int[((a + b*x)^2*ArcTan[a + b*x])/(1 + a^2 + 2*a*b*x + b^2*x^2)^(1/3),x]
 
output
$Aborted
 

3.1.69.3.1 Defintions of rubi rules used

rule 5560
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(u_.), x_Symbol] :> Unintegrab 
le[u*(a + b*ArcTan[c*x])^p, x] /; FreeQ[{a, b, c, p}, x] && (EqQ[u, 1] || M 
atchQ[u, ((d_.) + (e_.)*x)^(q_.) /; FreeQ[{d, e, q}, x]] || MatchQ[u, ((f_. 
)*x)^(m_.)*((d_.) + (e_.)*x)^(q_.) /; FreeQ[{d, e, f, m, q}, x]] || MatchQ[ 
u, ((d_.) + (e_.)*x^2)^(q_.) /; FreeQ[{d, e, q}, x]] || MatchQ[u, ((f_.)*x) 
^(m_.)*((d_.) + (e_.)*x^2)^(q_.) /; FreeQ[{d, e, f, m, q}, x]])
 

rule 5580
Int[((a_.) + ArcTan[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m 
_.)*((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[1/d   Subs 
t[Int[((d*e - c*f)/d + f*(x/d))^m*(C/d^2 + (C/d^2)*x^2)^q*(a + b*ArcTan[x]) 
^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, p, q}, x] & 
& EqQ[B*(1 + c^2) - 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0]
 
3.1.69.4 Maple [N/A] (verified)

Not integrable

Time = 0.23 (sec) , antiderivative size = 33, normalized size of antiderivative = 0.94

\[\int \frac {\left (b x +a \right )^{2} \arctan \left (b x +a \right )}{\left (b^{2} x^{2}+2 a b x +a^{2}+1\right )^{\frac {1}{3}}}d x\]

input
int((b*x+a)^2*arctan(b*x+a)/(b^2*x^2+2*a*b*x+a^2+1)^(1/3),x)
 
output
int((b*x+a)^2*arctan(b*x+a)/(b^2*x^2+2*a*b*x+a^2+1)^(1/3),x)
 
3.1.69.5 Fricas [N/A]

Not integrable

Time = 0.29 (sec) , antiderivative size = 44, normalized size of antiderivative = 1.26 \[ \int \frac {(a+b x)^2 \arctan (a+b x)}{\sqrt [3]{1+a^2+2 a b x+b^2 x^2}} \, dx=\int { \frac {{\left (b x + a\right )}^{2} \arctan \left (b x + a\right )}{{\left (b^{2} x^{2} + 2 \, a b x + a^{2} + 1\right )}^{\frac {1}{3}}} \,d x } \]

input
integrate((b*x+a)^2*arctan(b*x+a)/(b^2*x^2+2*a*b*x+a^2+1)^(1/3),x, algorit 
hm="fricas")
 
output
integral((b^2*x^2 + 2*a*b*x + a^2)*arctan(b*x + a)/(b^2*x^2 + 2*a*b*x + a^ 
2 + 1)^(1/3), x)
 
3.1.69.6 Sympy [N/A]

Not integrable

Time = 3.72 (sec) , antiderivative size = 36, normalized size of antiderivative = 1.03 \[ \int \frac {(a+b x)^2 \arctan (a+b x)}{\sqrt [3]{1+a^2+2 a b x+b^2 x^2}} \, dx=\int \frac {\left (a + b x\right )^{2} \operatorname {atan}{\left (a + b x \right )}}{\sqrt [3]{a^{2} + 2 a b x + b^{2} x^{2} + 1}}\, dx \]

input
integrate((b*x+a)**2*atan(b*x+a)/(b**2*x**2+2*a*b*x+a**2+1)**(1/3),x)
 
output
Integral((a + b*x)**2*atan(a + b*x)/(a**2 + 2*a*b*x + b**2*x**2 + 1)**(1/3 
), x)
 
3.1.69.7 Maxima [N/A]

Not integrable

Time = 0.36 (sec) , antiderivative size = 35, normalized size of antiderivative = 1.00 \[ \int \frac {(a+b x)^2 \arctan (a+b x)}{\sqrt [3]{1+a^2+2 a b x+b^2 x^2}} \, dx=\int { \frac {{\left (b x + a\right )}^{2} \arctan \left (b x + a\right )}{{\left (b^{2} x^{2} + 2 \, a b x + a^{2} + 1\right )}^{\frac {1}{3}}} \,d x } \]

input
integrate((b*x+a)^2*arctan(b*x+a)/(b^2*x^2+2*a*b*x+a^2+1)^(1/3),x, algorit 
hm="maxima")
 
output
integrate((b*x + a)^2*arctan(b*x + a)/(b^2*x^2 + 2*a*b*x + a^2 + 1)^(1/3), 
 x)
 
3.1.69.8 Giac [N/A]

Not integrable

Time = 172.49 (sec) , antiderivative size = 3, normalized size of antiderivative = 0.09 \[ \int \frac {(a+b x)^2 \arctan (a+b x)}{\sqrt [3]{1+a^2+2 a b x+b^2 x^2}} \, dx=\int { \frac {{\left (b x + a\right )}^{2} \arctan \left (b x + a\right )}{{\left (b^{2} x^{2} + 2 \, a b x + a^{2} + 1\right )}^{\frac {1}{3}}} \,d x } \]

input
integrate((b*x+a)^2*arctan(b*x+a)/(b^2*x^2+2*a*b*x+a^2+1)^(1/3),x, algorit 
hm="giac")
 
output
sage0*x
 
3.1.69.9 Mupad [N/A]

Not integrable

Time = 0.59 (sec) , antiderivative size = 35, normalized size of antiderivative = 1.00 \[ \int \frac {(a+b x)^2 \arctan (a+b x)}{\sqrt [3]{1+a^2+2 a b x+b^2 x^2}} \, dx=\int \frac {\mathrm {atan}\left (a+b\,x\right )\,{\left (a+b\,x\right )}^2}{{\left (a^2+2\,a\,b\,x+b^2\,x^2+1\right )}^{1/3}} \,d x \]

input
int((atan(a + b*x)*(a + b*x)^2)/(a^2 + b^2*x^2 + 2*a*b*x + 1)^(1/3),x)
 
output
int((atan(a + b*x)*(a + b*x)^2)/(a^2 + b^2*x^2 + 2*a*b*x + 1)^(1/3), x)